Goto

Collaborating Authors

 Knowledge Discovery


"See the World, Discover Knowledge": A Chinese Factuality Evaluation for Large Vision Language Models

arXiv.org Artificial Intelligence

The evaluation of factual accuracy in large vision language models (LVLMs) has lagged behind their rapid development, making it challenging to fully reflect these models' knowledge capacity and reliability. In this paper, we introduce the first factuality-based visual question-answering benchmark in Chinese, named ChineseSimpleVQA, aimed at assessing the visual factuality of LVLMs across 8 major topics and 56 subtopics. The key features of this benchmark include a focus on the Chinese language, diverse knowledge types, a multi-hop question construction, high-quality data, static consistency, and easy-to-evaluate through short answers. Moreover, we contribute a rigorous data construction pipeline and decouple the visual factuality into two parts: seeing the world (i.e., object recognition) and discovering knowledge. This decoupling allows us to analyze the capability boundaries and execution mechanisms of LVLMs. Subsequently, we evaluate 34 advanced open-source and closed-source models, revealing critical performance gaps within this field.


Overview of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management

Interactive AI Magazine

IC3K 2024 (16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management) received 175 paper submissions from 47 countries. To evaluate each submission, a doubleโ€blind paper review was performed by the Program Committee. After a stringent selection process, 37 papers were published and presented as full papers, i.e. completed work (12 The organizing committee included the IC3K Conference Chair: Jorge Bernardino, Polytechnic University of Coimbra, Portugal and the IC3K 2024 Program Chairs: David Aveiro, University of Madeira, NOVA- LINCS and ARDITI, Portugal, Antonella Poggi, Universitร  di Roma "La Sapienza", Italy, Ana Fred, Instituto de Telecomunicaรงรตes and Instituto Superior Tรฉcnico (University of Lisbon), Portugal, Le Gruenwald, University of Oklahoma, School of Computer Science, United States, Elio Masciari, University of Napoli Federico II, Italy and Frans Coenen, University of Liverpool, United Kingdom. At the closing session, the conference acknowledged a few papers that were considered excellent in their class, presenting a "Best Paper Award", "Best Student Paper Award" and "Best Poster Award" for each of the co-located conferences. A short list of presented papers will be selected so that revised and extended versions of these papers will be published by Springer in a CCIS Series Book.


KANS: Knowledge Discovery Graph Attention Network for Soft Sensing in Multivariate Industrial Processes

arXiv.org Artificial Intelligence

Soft sensing of hard-to-measure variables is often crucial in industrial processes. Current practices rely heavily on conventional modeling techniques that show success in improving accuracy. However, they overlook the non-linear nature, dynamics characteristics, and non-Euclidean dependencies between complex process variables. To tackle these challenges, we present a framework known as a Knowledge discovery graph Attention Network for effective Soft sensing (KANS). Unlike the existing deep learning soft sensor models, KANS can discover the intrinsic correlations and irregular relationships between the multivariate industrial processes without a predefined topology. First, an unsupervised graph structure learning method is introduced, incorporating the cosine similarity between different sensor embedding to capture the correlations between sensors. Next, we present a graph attention-based representation learning that can compute the multivariate data parallelly to enhance the model in learning complex sensor nodes and edges. To fully explore KANS, knowledge discovery analysis has also been conducted to demonstrate the interpretability of the model. Experimental results demonstrate that KANS significantly outperforms all the baselines and state-of-the-art methods in soft sensing performance. Furthermore, the analysis shows that KANS can find sensors closely related to different process variables without domain knowledge, significantly improving soft sensing accuracy.


Knowledge Discovery using Unsupervised Cognition

arXiv.org Artificial Intelligence

Knowledge discovery is key to understand and interpret a dataset, as well as to find the underlying relationships between its components. Unsupervised Cognition is a novel unsupervised learning algorithm that focus on modelling the learned data. This paper presents three techniques to perform knowledge discovery over an already trained Unsupervised Cognition model. Specifically, we present a technique for pattern mining, a technique for feature selection based on the previous pattern mining technique, and a technique for dimensionality reduction based on the previous feature selection technique. The final goal is to distinguish between relevant and irrelevant features and use them to build a model from which to extract meaningful patterns. We evaluated our proposals with empirical experiments and found that they overcome the state-of-the-art in knowledge discovery.


Enhancing Biomedical Knowledge Discovery for Diseases: An End-To-End Open-Source Framework

arXiv.org Artificial Intelligence

The ever-growing volume of biomedical publications creates a critical need for efficient knowledge discovery. In this context, we introduce an open-source end-to-end framework designed to construct knowledge around specific diseases directly from raw text. To facilitate research in disease-related knowledge discovery, we create two annotated datasets focused on Rett syndrome and Alzheimer's disease, enabling the identification of semantic relations between biomedical entities. Extensive benchmarking explores various ways to represent relations and entity representations, offering insights into optimal modeling strategies for semantic relation detection and highlighting language models' competence in knowledge discovery. We also conduct probing experiments using different layer representations and attention scores to explore transformers' ability to capture semantic relations.


A Document-based Knowledge Discovery with Microservices Architecture

arXiv.org Artificial Intelligence

The first step towards digitalization within organizations lies in digitization - the conversion of analog data into digitally stored data. This basic step is the prerequisite for all following activities like the digitalization of processes or the servitization of products or offerings. However, digitization itself often leads to 'data-rich' but 'knowledge-poor' material. Knowledge discovery and knowledge extraction as approaches try to increase the usefulness of digitized data. In this paper, we point out the key challenges in the context of knowledge discovery and present an approach to addressing these using a microservices architecture. Our solution led to a conceptual design focusing on keyword extraction, similarity calculation of documents, database queries in natural language, and programming language independent provision of the extracted information. In addition, the conceptual design provides referential design guidelines for integrating processes and applications for semi-automatic learning, editing, and visualization of ontologies. The concept also uses a microservices architecture to address non-functional requirements, such as scalability and resilience. The evaluation of the specified requirements is performed using a demonstrator that implements the concept. Furthermore, this modern approach is used in the German patent office in an extended version.


Knowledge Discovery in Surveys using Machine Learning: A Case Study of Women in Entrepreneurship in UAE

arXiv.org Artificial Intelligence

Knowledge Discovery plays a very important role in analyzing data and getting insights from them to drive better business decisions. Entrepreneurship in a Knowledge based economy contributes greatly to the development of a country's economy. In this paper, we analyze surveys that were conducted on women in entrepreneurship in UAE. Relevant insights are extracted from the data that can help us to better understand the current landscape of women in entrepreneurship and predict the future as well. The features are analyzed using machine learning to drive better business decisions in the future.


Toward Safe Evolution of Artificial Intelligence (AI) based Conversational Agents to Support Adolescent Mental and Sexual Health Knowledge Discovery

arXiv.org Artificial Intelligence

Following the recent release of various Artificial Intelligence (AI) based Conversation Agents (CAs), adolescents are increasingly using CAs for interactive knowledge discovery on sensitive topics, including mental and sexual health topics. Exploring such sensitive topics through online search has been an essential part of adolescent development, and CAs can support their knowledge discovery on such topics through human-like dialogues. Yet, unintended risks have been documented with adolescents' interactions with AI-based CAs, such as being exposed to inappropriate content, false information, and/or being given advice that is detrimental to their mental and physical well-being (e.g., to self-harm). In this position paper, we discuss the current landscape and opportunities for CAs to support adolescents' mental and sexual health knowledge discovery. We also discuss some of the challenges related to ensuring the safety of adolescents when interacting with CAs regarding sexual and mental health topics. We call for a discourse on how to set guardrails for the safe evolution of AI-based CAs for adolescents.


Challenges with unsupervised LLM knowledge discovery

arXiv.org Artificial Intelligence

We show that existing unsupervised methods on large language model (LLM) activations do not discover knowledge -- instead they seem to discover whatever feature of the activations is most prominent. The idea behind unsupervised knowledge elicitation is that knowledge satisfies a consistency structure, which can be used to discover knowledge. We first prove theoretically that arbitrary features (not just knowledge) satisfy the consistency structure of a particular leading unsupervised knowledge-elicitation method, contrast-consistent search (Burns et al. - arXiv:2212.03827). We then present a series of experiments showing settings in which unsupervised methods result in classifiers that do not predict knowledge, but instead predict a different prominent feature. We conclude that existing unsupervised methods for discovering latent knowledge are insufficient, and we contribute sanity checks to apply to evaluating future knowledge elicitation methods. Conceptually, we hypothesise that the identification issues explored here, e.g. distinguishing a model's knowledge from that of a simulated character's, will persist for future unsupervised methods.


Mixed-Variable Global Sensitivity Analysis For Knowledge Discovery And Efficient Combinatorial Materials Design

arXiv.org Machine Learning

Global Sensitivity Analysis (GSA) is the study of the influence of any given inputs on the outputs of a model. In the context of engineering design, GSA has been widely used to understand both individual and collective contributions of design variables on the design objectives. So far, global sensitivity studies have often been limited to design spaces with only quantitative (numerical) design variables. However, many engineering systems also contain, if not only, qualitative (categorical) design variables in addition to quantitative design variables. In this paper, we integrate Latent Variable Gaussian Process (LVGP) with Sobol' analysis to develop the first metamodel-based mixed-variable GSA method. Through numerical case studies, we validate and demonstrate the effectiveness of our proposed method for mixed-variable problems. Furthermore, while the proposed GSA method is general enough to benefit various engineering design applications, we integrate it with multi-objective Bayesian optimization (BO) to create a sensitivity-aware design framework in accelerating the Pareto front design exploration for metal-organic framework (MOF) materials with many-level combinatorial design spaces. Although MOFs are constructed only from qualitative variables that are notoriously difficult to design, our method can utilize sensitivity analysis to navigate the optimization in the many-level large combinatorial design space, greatly expediting the exploration of novel MOF candidates.